
FTGuard: A Priority-Aware Strategy Against the Flow Table
Overflow Attack in SDN∗

Menghao Zhang, Jun Bi, Jiasong Bai, Zhao Dong, Yongbin Li, Zhaogeng Li
Institute for Network Sciences and Cyberspace, Tsinghua University

Department of Computer Science, Tsinghua University
Tsinghua National Laboratory for Information Science and Technology (TNList)

CCS CONCEPTS
• Security and privacy → Network security; • Networks →

Network architectures;

KEYWORDS
SDN; Flow Table Overflow Attack; Eviction; Priority

ACM Reference format:
Menghao Zhang, Jun Bi, Jiasong Bai, Zhao Dong, Yongbin Li, Zhaogeng Li.
2017. FTGuard: A Priority-Aware Strategy Against the Flow Table Overflow
Attack in SDN. In Proceedings of SIGCOMM Posters and Demos ’17, Los
Angeles, CA, USA, August 22–24, 2017, 3 pages.

1 PROBLEM STATEMENT
Software-Defined Networking (SDN) allows applications to in-

stall dynamic and fine-grained flow rules in the switches. In modern
hardware switches, these rules are stored in Ternary Content Ad-
dressableMemory (TCAM) to achievewire-speed packet processing.
However, due to the manufacturing cost and power consumption
of TCAM, most commodity switches are equipped with relatively
limited flow table space, ranging from hundreds to a few thousands.
This is usually insufficient in many SDN circumstances [2].

When the flow table is full, existing SDN switches adopt an
eviction mechanism and automatically eliminate some entries to
make space for newer flow rules. It is implemented as the Least
Recently Used (LRU) eviction scheme in most of the popular switch
platforms (e.g. OpenvSwitch, Pica8, Cisco Nexus). Even so, when
the number of active flows exceeds the maximum number of entries
in the flow table, some active entries currently used by active flows
have to be kicked out to accommodate new flows. Meanwhile, these
active flows become new flows and new flow-mod messages have
to be parsed and installed again.

This eviction mechanism could be exploited by an attacker to
commit the flow table overflow attack. With the information (idle-
timeout, hard-timeout, and even flow table capacity, flow table
usage) inferred by sending probing packets [3], the attacker is able
∗Supported by National Key R&D Program of China (2017YFB0801701) and the National
Science Foundation of China (No.61472213). Jun Bi is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5057-0/17/08. . . $15.00

to commit this overflow attack at lower cost and risk. As the flow
table is crowded under normal conditions, with only a suitable
number of fake packets, numerous new flow rules are tricked from
the controller and frequent replacements would happen in the flow
table. The flow entries used by benign users are inclined to be
replaced by aggressive useless fake flows from the attacker, which
would result in more table-misses from benign users and seriously
degrade the performance of the entire network system.

2 COUNTERMEASURE ANALYSIS
As all the new flows compete for the limited flow table resources

in the data plane successively, if no differentiation is taken, the
demand of the subsequent flow will inevitably evict the flow en-
tries of the previous one. Especially when the increasing successive
demands come from malicious users, the entire flow table is used
up and the other users may suffer from flow entry starvation. A
strawman solution that distinguishing suspected traffic from be-
nign traffic and simply dropping it at the controller seems feasible,
however, the judgment for suspected or not may be unreliable such
that false positive or false negative is possible. As a result, some
benign traffic is inevitably harmed while some attack traffic can
easily pass.

To address the above problem, we propose FTGuard, a behavior-
based priority-aware defense strategy, to cope with this overflow
attack. Our basic idea is to distinguish different flows with different
priorities to achieve soft-isolation for users1 of different evaluations.
The evaluation is formalized as a score, which is favorable to the
benign traffic features while adverse to the malicious ones. Based
on the evaluation scores, we assign different priorities to flows of
different users dynamically. Flows of benign users are inclined to
have higher priorities while those of suspected users are more likely
to have lower priorities. When the flow table is full, flow entries
with the lowest priority are preferred to be evicted to make room
for new incoming flows. Experiments and evaluations demonstrate
that FTGuard provides cost-efficient protection for the flow table
and is able to mitigate the overflow attack effectively.

3 FTGUARD DESIGN
The architecture of FTGuard is shown in Figure 1. As discussed

above, the idea of FTGuard seems simple conceptually. However,
we encounter three major challenges in the design of FTGuard. 1)
how to collect traffic features and what features to collect. 2) how
to develop the evaluation criterion to distinguish flows. 3) how to
implement the strategy in the SDN switch without changing its

1Benign users are inclined to be associated with only one source address, and an
attacker may forge a set of source addresses to commit the attack. However, the set of
forged source addresses could be regarded as numerous attackers. Therefore, in this
paper, we use source address and user interchangeably.

141

DOI:10.1145/3123878.3132015

DOI:10.1145/3123878.3132015

https://doi.org/10.1145/3123878.3123929
https://doi.org/10.1145/3123878.3123929

SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA M. Zhang, J. Bi, J. Bai, Z. Dong, Y. Li, Z. Li

Network	Operation	System

OpenFlow,	etc.

High priority flows Medium priority flows Low	priority flows

FTGuard

Flow - mods

Traffic	Feature
Collection

Evaluation	
Score

Calculation

Priority	
Encapsulation

S2

S1 S3

Statistics
user

traffic

Figure 1: Architecture Overview

96	 97	 63	

136	 111	

77	

50	
45	

31	

97	 100	 68	

140	 112	

78	

51	
44	

33	

0

50

100

150

200

250

300

350

Flow-Entry Packet-In Flow-Removed

Av
er
ag
e
N
um

be
r

OF-user1 OF-user2 OF-user3

Normal	User1 Normal	User2 Normal	User3

OE
OE

OE

FG
FG

FG

156	

232	

165	

282	

193	

148	133	 134	 140	

8	

142	 148	

0	

50	

100	

150	

200	

250	

300	

Flow-Entry Packet-In Flow-Removed

Av
er
ag
e	
N
um

be
r

Normal	Users	- OE Normal	Users	- FG
Attacker	- OE Attacker	- FG

Rate	(pps)
Rate	(pps)

(a) The resource usage between an attacker and normal
users under attack scenarios

96	 97	 63	

136	 111	

77	

50	
45	

31	

97	 100	 68	

140	 112	

78	

51	
44	

33	

0

50

100

150

200

250

300

350

Flow-Entry Packet-In Flow-Removed

Av
er
ag
e
N
um

be
r

OF-user1 OF-user2 OF-user3

Normal	User1 Normal	User2 Normal	User3

OE
OE

OE

FG
FG

FG

156	

232	

165	

282	

193	

148	133	 134	 140	

8	

142	 148	

0	

50	

100	

150	

200	

250	

300	

Flow-Entry Packet-In Flow-Removed

Av
er
ag
e	
N
um

be
r

Normal	Users	- OE Normal	Users	- FG
Attacker	- OE Attacker	- FG

Rate	(pps)
Rate	(pps)

(b) The resource usage between an attacker and normal
users under attack scenarios

Figure 2: Evaluation Results

hardware. As shown in Figure 1, three modules are designed to deal
with the corresponding challenges.

As for the first challenge, we design the Traffic Feature Collection
module and collect traffic features from the basic service provided
by the network operation system. Two fundamental differences
between the normal traffic and the attack traffic are the frequency
of new flows and the packet number per flow [1]. In order to reduce
the attack cost, the attacker tends to commit the attack with short-
flows, since this way he could cause a stronger attack effect with
fewer packets. As each new flow would trigger a packet-in message
to the controller, passive monitoring, classifying, and counting on
the controller are sufficient to obtain the frequency of new flows.
However, the number of packets per flow is not directly visible to
the controller. Statistic messages have to be issued to the switch
periodically (every T seconds) to allow the controller to query the
snapshot information (the counter field of the flow entries) it needs.

For the second challenge, the Evaluation Score Calculation mod-
ule is introduced and an evaluation criterion is developed to dis-
tinguish the behavior of different users. Considering the past pe-
riod (T seconds), we denote the number of packet-in messages as
pii , the ratio of good flow entries pulled from the switch as cri ,
where cri =

|flow entries|(counter>t∧source address==дiven)
|flow entries|(source address==дiven) , t is a con-

stant parameter used to distinguish good flow entries from bad
ones (recommended to be set as 1 or 2). We denote the score as-
sociated with pii and cri as win . Obviously, win has a negative
correlation with pii and a positive correlation with cri , since the
attacker is inclined to attack with short frequent new flows. We
simply use two linear correlations and add them up in this initial
design. Considering historic information, the evaluation scorewi at
this point obeys an exponential weighted moving average (EWMA):
wi = (1 − α)wi + αwin , where α is a value between 0 and 1.

We address the third challenge with a probability selection algo-
rithm in the Priority Encapsulation module. To map the scorewi to
the priority (high, medium and low), we divide the region of the
score into three parts with two thresholds (thh , thl), depending on
the network policy. A Flow whose source address’s score is higher
than thh is definite to be assigned to a high priority (obviously
good), while a flow with a score between thl and thh is assigned
to a medium priority with a large probability or a high priority
with a small probability (ambiguously good). In order to solve the
occasional case that a benign user may be evaluated with a score
lower than thl and thus suffers from starvation ever since, his flows
are assigned to a high priority or a medium priority with a small
probability, reserving some flow entries for him to be dug up to a

higher score. With the priority obtained, we encode it into the Im-
portance field of flow-mod messages, which is added in OpenFlow
1.4 as optional. The eviction process would be performed strictly
in order of importance, that is, flow entries with lower importance
will always be evicted before flow entries with higher importance.

4 EVALUATION
We implement FTGuard on Floodlight and OpenvSwitch, and

perform the experiment in Mininet. For more details, please refer
to our source code at Github2. Our benign traffic is collected from
the Tsinghua campus network. We set the sampling period T as 3,
the parameter α in EWMA as 0.5, and use a simple topology with
only one switch connecting 3 hosts. In Figure 2, OE denotes the
original strategy and FG refers to our priority-aware strategy.

In the no-attack scenarios, 3 hosts communicate with each other
with benign traffic. As shown in Figure 2(a), flow entries of 3 hosts
coexist with each other peacefully as nothing happens, which shows
our strategy works with no extra effect on benign traffic when no
attack happens. In the attack scenarios, 1 host becomes the attacker
and sends deliberately forged packets with the same packet rate. As
shown in Figure 2(b), without our strategy, the attacker occupies
much more flow entries (133/8), causes more packet-in (232/193)
and flow-removed (165/148) messages per second from benign users.
All these results demonstrate that our strategy is able to mitigate
the overflow attack effectively.

5 DISCUSSION AND FUTUREWORK
(1)An attacker forges another user’s source address to pol-

lute the evaluation score of other users: Method like Source Ad-
dress Validation is easy to deploy in SDN and require no extra cost
[4], which is able to solve this forgery problem more thoroughly. (2)
An attacker imitates the traffic feature of benign users: The
evaluation criterion and the selected features are unknowable to
the attacker. Even if he could obtain these information, the cost
for this overflow attack is multiplied, for he has to send multiple
packets to cause the same attack effect. (3) controller v.s. control
channel v.s. switch: Different SDN circumstances face different
bottlenecks, this paper focuses on the overflow attack in the switch
while the other two aspects are left to other works.

As our future work, we will consider more traffic features, de-
velop more accurate evaluation criterion, give more suggestions on
the parameters in our strategy, do more experiments to evaluate
the burden on the controller, and consider more complex states.

2https://github.com/ZhangMenghao/FG/tree/baijiasong

142

FTGuard: A Priority-Aware Strategy
Against the Flow Table Overflow Attack in SDN SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA

REFERENCES
[1] S. Gao, Z. Peng, B. Xiao, A. Hu, and K. Ren. 2017. FloodDefender: Protecting

Data and Control Plane Resources under SDN-aimed DoS Attacks. In INFOCOM.
IEEE.

[2] N. Katta, O. Alipourfard, J. Rexford, and D.Walker. 2016. Cacheflow: Dependency-
aware rule-caching for software-defined networks. In SOSR. ACM.

[3] J. Leng, Y. Zhou, J. Zhang, and C. Hu. 2015. An inference attack model for flow
table capacity and usage: Exploiting the vulnerability of flow table overflow in
software-defined network. arXiv preprint arXiv:1504.03095 (2015).

[4] B. Liu, J. Bi, and Y. Zhou. 2016. Source Address Validation in Software Defined
Networks. In SIGCOMM. ACM.

143

	1 Problem Statement
	2 Countermeasure analysis
	3 FTGuard Design
	4 Evaluation
	5 Discussion and Future work
	References

